Toughness and Vertex Degrees

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toughness and Vertex Degrees

We study theorems giving sufficient conditions on the vertex degrees of a graph G to guarantee G is t-tough. We first give a best monotone theorem when t ≥ 1, but then show that for any integer k ≥ 1, a best monotone theorem for t = 1 k ≤ 1 requires at least f(k) · |V (G)| nonredundant conditions, where f(k) grows superpolynomially as k → ∞. When t < 1, we give an additional, simple theorem for...

متن کامل

Toughness, degrees and 2-factors

In this paper we generalize a Theorem of Jung which shows that 1-tough graphs with (G) |V (G)|−4 2 are hamiltonian. Our generalization shows that these graphs contain a wide variety of 2-factors. In fact, these graphs contain not only 2-factors having just one cycle (the hamiltonian case) but 2-factors with k cycles, for any k such that 1 k n−16 4 . © 2004 Elsevier B.V. All rights reserved.

متن کامل

Vertex Degrees in Planar Maps

We prove a general multi-dimensional central limit theorem for the expected number of vertices of a given degree in the family of planar maps whose vertex degrees are restricted to an arbitrary (finite or infinite) set of positive integers D. We also discuss the possible extension to maps of higher genus.

متن کامل

Vertex Degrees in Planar Graphs

For a planar graph on n vertices we determine the maximum values for the following: 1) the sum of the m largest vertex degrees. 2) the number of vertices of degree at least k. 3) the sum of the degrees of vertices with degree at least k.

متن کامل

Vertex Degrees in Outerplanar Graphs

For an outerplanar graph on n vertices, we determine the maximum number of vertices of degree at least k. For k = 4 (and n ≥ 7) the answer is n−4. For k = 5 (and n ≥ 4), the answer is ⌊

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Graph Theory

سال: 2012

ISSN: 0364-9024

DOI: 10.1002/jgt.21639